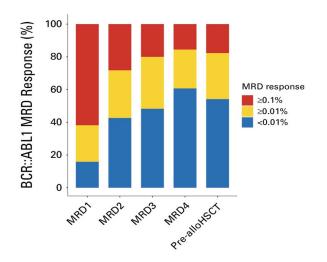
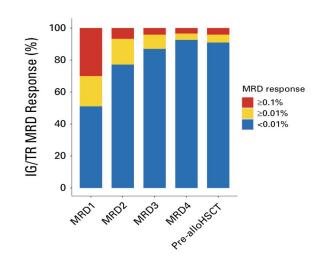


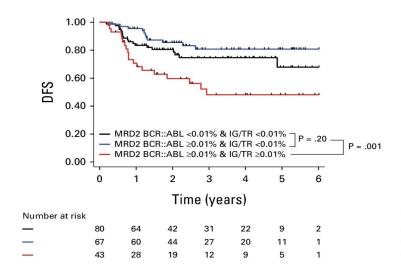
R/R ALL Ph+

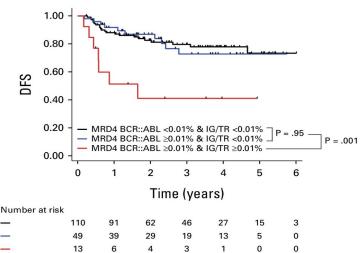
A less frequent but more difficult scenario

Disclosures of M. Leoncin


Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Amgen						Х	
Menarini StemLine						x	


Do we know our enemy?




BCR-ABL or IgH/TCR

Kim R et Al.J Clin Oncol. 2024 Sep 10;42(26):3140-3150.

Short NJ et Al. Blood Adv. 2025 Mar 25;9(6):1442-1451.

Recommendations

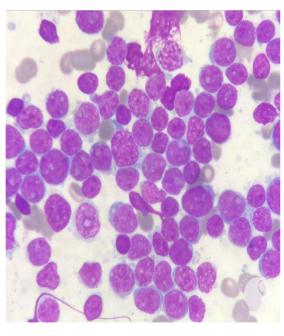
- In patients with B-cell ALL, NGS-based MRD quantification of leukemia-specific IG/TR clonotypes is preferred for clinical decision-making over MFC, PCR for IG/TR, or RT-PCR for BCR::ABL1 for MRD assessment, because NGS for IG/TR has superior sensitivity and discrimination for relapse than these other assays.
- In Ph-positive ALL, NGS for IG/TR and RT-PCR for BCR::ABL1
 are complementary methods of MRD assessment, although
 NGS for IG/TR may be more suitable for prognostication and
 most therapeutic decision-making, because this assay has
 greater specificity for the leukemic clone than does RT-PCR for
 BCR::ABL1.
- In patients with T-cell ALL, NGS for IG/TR and other MRD assays (eg, MFC) are complementary methods of MRD assessment, as NGS for IG/TR provides superior sensitivity to other MRD assays but is not well-validated in T-cell ALL.
- MFC or PCR-based assays may be helpful in select cases, such as when NGS-based MRD for IG/TR is unavailable (eg, towing to the lack of a trackable clonotype) or is too financially costly, or when a very rapid turnaround time is needed for urgent decision-making. MFC may also be complementary to other MRD assays when assessment of antigen expression is needed for selection of antigen-directed immunotherapy. When used, MFC-based MRD should be performed in a validated laboratory that can achieve a sensitivity of 1 × 10⁻⁴.
- In patients with Ph-positive ALL for whom NGS-based MRD for IG/TR is unavailable, PCR for IG/TR is preferred over MFC or RT-PCR for BCR::ABL1. In cases in which NGS or PCR assays for IG/TR are both unavailable, RT-PCR for BCR::ABL1 is preferred over MFC.

Venezia | 20 novembre 2025

BCR-ABL mutations

When is NGS testing Why is NGS testing What if a low-level mutation is indicated? indicated? detected? At diagnosis Pretherapy detection of Monthly evaluation of mutation mutations with known kinetics should be performed, resistance profile at low until either BCR-ABL1 levels level might allow to identify decrease below 0.1%, or MRD patients who have a higher and mutation level increase risk of MRD persistence and In the latter case, switching early relapse, and help in to a different TKI should be planning an individualized considered when the mutation molecular and mutation is known to be not sensitive to monitoring the TKI currently used At the end of induction (or consolidation) Personalized TKI choice should In patients with no Though few, such patients **CHR** be based on the detectable are highly likely to harbor mutations conferring resistance mutation(s) to TKI-based therapy In patients with A relatively high incidence Switching to a different TKI no complete of mutations conferring should be considered when the molecular resistance to TKI-based mutation is known to be not remission^a therapy is expected in sensitive to the TKI currently association with high/rising used levels of MRD At relapse Personalized TKI choice should Accurate assessment of be based on the detectable mutation status may be important for personalized mutation(s) TKI choice Before allo-SCT In patients who Detection of low-level Posttransplantation reassessment did not have mutations is likely to affect should be performed for NGS testing posttransplantation outcome reinstitution of personalized performed at the TKI therapy based on MRD time of transplant and mutation status decision^a After allo-SCT Whenever a patient Persistent mutations associated Monthly evaluation should be tests MRD+a with MRD positivity may performed for personalized affect posttransplantation posttransplantation reinstitution of TKI therapy based on MRD outcome and mutation status

Soverini S et Al. Cancer Med. 2020 May;9(9):2960-2970.



Venezia | 20 novembre 2025

11.10.2017, 45yo Male

- 2 weeks progressive fatigue
- Admitted to ER for syncope
- APR: Mute

EEC							
WBC	49 x 10^9/L						
Hb	4,2 g/dL						
PTL	28 x 10^9/L						
Blast	83%						
Normal renal and hepatic function							
LDH	546 U/L						

BM: 95% of small, agranular blasts

EO: ECOG 1, cervical and inguinal lymphogranuly, NO organomegaly, normal pulmonary function

IF BM

CD45+, CD19+, CD10+, cyCD79a+, CD34+, HLA-DR+, TdT+, CD22+;

B-ALL with t(9;22)(q34.1;q11.2) sec ICC 2022

RT-PCR for BCR/ABL1

postivity for p210 transcript

• Karyotype: t(9;22) in 16% of metaphases

Lumbar Puncture: CNS1

1st line: D-ALBA

- 16.10.2017: Enrolled GIMEMA LAL2116 protocol and start PDN + Dasatinib 140 mg/die, well tolerated
- 13.11.2017: d+22 BM evaluation: CR, MRD (p210) POS 1,2 x 10^-2, dasatinib continued ad 140 mg/die
- 23.01.2018: d+85 BM evaluation: CR, MRD (p210) POS 9,8 x 10^-2; dasatinib continued ad 140 mg/die
- 24.01.2018: Start C1 Blina: coryza, dasatinib continued ad 140 mg/die
- 22.02.2018: BM evaluation: CR, MRD PNQ (PB+BM), dasatinib continued at 140 mg/die
- 06.03.2018: Start C2 Blina: well tolerated, dasatinib continued at 140 mg/die
- 04.04.2018: BM evaluation: CR, MRD NEG (PB+BM), dasatinib continued at 140 mg/die
- 16.04.2018: Start C3 Blina: well tolerated, dasatinib continued at 140 mg/die
- 15.05.2018: BM evaluation: CR, MRD NEG (PB+BM), dasatinib continued at 140 mg/die
- 04.06.2018: Start C4 Blina: well tolerated, dasatinib continued at 140 mg/die
- 26.06.2018: BM evaluation: CR, MRD NEG (PB+BM), dasatinib continued at 140 mg/die
- 09.07.2018: Start C5 Blina: well tolerated, dasatinib continued at 140 mg/die
- 06.08.2018: BM evaluation: CR, MRD NEG (PB+BM), dasatinib continued at 140 mg/die
- In total 12 TIT performed (required per protocol)

Start D-ALBA

16/10/2017

During maintenance with Dasatinib, MRD persistently negative

COMPLICATIONS:

- 02.10.2018: Admission for CMV colitis treated with valgancicolvir, dasatinib continued at 140 mg/die
- 04.02.2019: CMV reactivation treated with valgancicolvir and Ig anti-CMV, dasatinib continued at 140 mg/die
- 08-09.2019: Admission for CMV reactivation with colitis and pneumonia treated with valgancicolvir and foscavir, dasatinib reduced at 100 mg/die
- 24.10.2019: Admission for Pulmonar Hypertension related to dasatinib (CTCAE 3), STOP DASA, START IMATINIB 600 mg/die

19.12.2019: BM evaluation: CR, MRD NEG (PB+BM), Imatinib continued at 600 mg/die

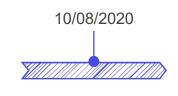
13.02.2020: BM evaluation: CR, MRD POS 2,1 x 10-4 (PB+BM), Imatinib continued at 600 mg/die

switch to Imatinib

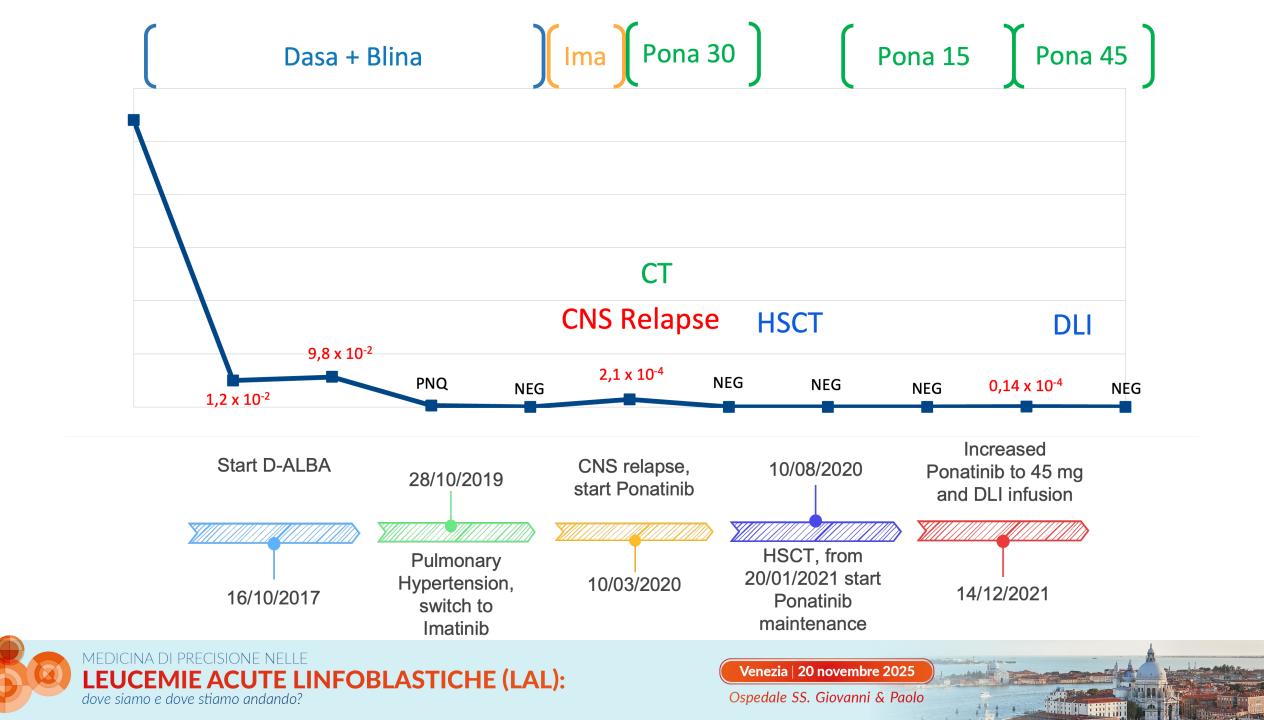
CNS Relapse: 2nd line CT + Ponatinib

- From 01.03.2020 headeache with poor response to acetaminophen and FANS
- . 10.03: diplopia appeared, at LP presence of lymphoblasts, at MRI leukemic meningosis, BM without leukemia localization (CNS only). BCR-ABL wt
- . 11.03.2020: start TIT biweekly (5 total) + Vincristine 2 mg weekly + start Ponatinib 45 mg/die
- 02.04.2020: start TIT weekly (4 total) + Vincristine 2 mg weekly (4 total) + Ponatinib 30 mg/die
- . 30.04.2020: MTX 2500 mg/mq in 24h + ARA-C 2000 mg/mq for 4 doses, hold Ponatinib 30 mg/die
- From 20.05.2020 start TIT every 2 weeks (4 doses), hold Ponatinib 30 mg/die
- 28.05.2020: BM evaluation: **CR, MRD neg (SP+SM)**, Ponatinib continued at 30 mg/die
- . 22.06-03.07.2020: Craniospinal RT (50 Gy)
- . 20.07.2020: BM evaluation: CR, MRD NEG (PB+BM), Ponatinib continued at 30 mg/die

CNS relapse, start Ponatinib



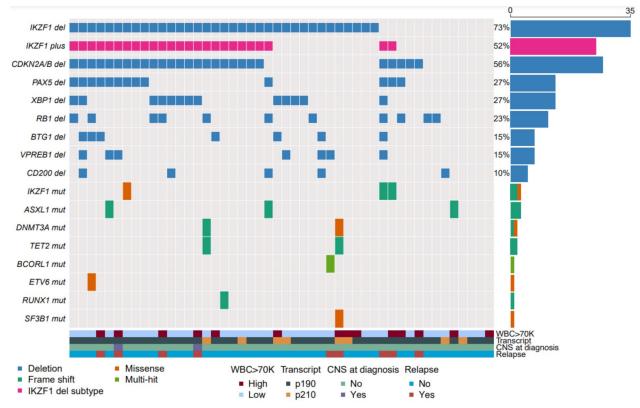
Venezia | 20 novembre 2025


Ospedale SS. Giovanni & Paolo

Allogenic bone marrow transplantation

- . 10.08.2020: Haploindentical HSCT (sister) after conditioning with TBI+Fludarabine at Papa Giovanni XXIII Hematolgy Unit (BG)
- +30, +60, +90 day BM evaluation: CR MRD NEG (PB+BM)
- From 07.01.2021 start Ponatinib maintenance at 15 mg/die
- 20.07.2021: BM evaluation: CR, MRD NEG (PB+BM), Ponatinib continued at 15 mg/die
- 14.12.2021: BM evaluation: CR, MRD POS (0,14 x 10^-4) (PB+BM), Ponatinib increased at 45 mg/die
- 18.01.2022: BM evaluation: **CR, MRD NEG (PB+BM)**, Ponatinib continued at 45 mg/die.
- 02.03.2022: DLI infusion (x 2 infusions)
- 17.05.2022: BM evaluation: CR, MRD NEG (PB+BM), Ponatinib continued at 45 mg/die.

HSCT, continue with ponatinib maintenance


- From May 2022 to August 2025 MRD persistently negative
- . 23.03.2024: Reduced Ponatinib at 30 mg/die, MRD persistently negative
- . 19.02.2025: Admission for VZV encephalitis and secondary polyradicolonevritis AI: Ponatinib suspension and start high dose steroids and acyclovir
- . Last p210 control (07/08/2025): negative (PB+BM)
- . Last FUP (15.10.2025): Good neurological recovery

Age, Years	WBC (10 ⁹ /L) ^a	Type of Relapse	Fusion Type	IKZF1	Mutation	Time From CHR to Relapse, ms	Allo-SCT	Last Follow-Up	Previously Reported in Puzzolo et al ²⁴
71	157.9	Hematologic	p190	IKZF1 ^{plus}	T315I	1.9	No	Dead	Yes
52	0.7	Hematologic	p190	ND	T315I	3.6	Second CHR	Dead	Yes
54	11.2	Nodal	p190	IKZF1 ^{plus}	T315I	3.6	Second CHR	Dead	Yes
30	35.9	CNS + molecular	p190	IKZF1 loss	E255K	4.2	Second CHR	Alive	Yes
40	10.5	CNS + molecular	p190	IKZF1 ^{plus}	T315I	4	Second CHR	Alive	Yes
81	4.9	Hematologic	p190	No	T315I	12	No	Dead	Yes
53	7.2	CNS + molecular	p210	No	NE	24.3	Second CHR	Dead	No
45	23.9	CNS + molecular	p210	IKZF1 loss	wt	25.8	Second CHR	Alive	No
67	2.9	Hematologic	p210	IKZF1 ^{plus}	T315I	14.9	First CHR	Dead	No

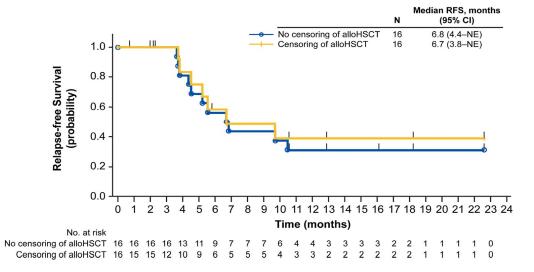
Foà R et Al. J Clin Oncol. 2024 Mar 10;42(8):881-885.

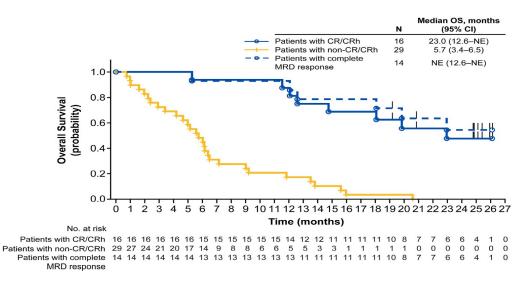
Venezia | 20 novembre 2025

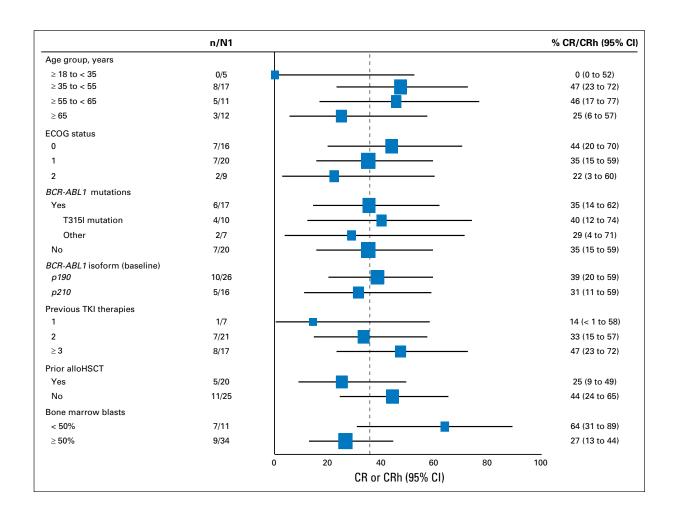
Not only an italian problem...

Table 2 – Clinical and molecular characteristics of relapsed patients

Patient	Age	WBC at diag- nosis (x 10 ⁹ /L)	Tran- script type	Mutations (targeted sequencing)	Gene deletions (SNP array)	NGS MRD response after C1	PCR MRD response after C1	Duration of CR1 (months)	Type of relapse
#1	57	2.0	p190	IKZF1	CDKN2A/B, PAX5, VPREB1,BTG1,RB1,XBP1	Negative	CMR	8.6	Peritoneum and lymph nodes (Ph-negative)
#2	60	322.1	p190	IKZF1	CDKN2A/B, PAX5	Not done	CMR	24.5	Bone marrow
#3	44	152.6	p190	None	CDKN2A/B	Positive (1/million)	CMR	7.6	Bone marrow
#4	18	4.5	p190	None	Not done	Positive (below LOD)	CMR	11.3	Bone marrow
#5	48	95.5	p190	None	IKZF1, CDKN2A/B, PAX5, BTG1	Not done	Not done	17.0	Bone mar- row+vitreous fluid
#6	28	270.5	p190	Not done	IKZF1, CDKN2A/B, PAX5, VPREB1	Not done	CMR	22.0	CNS
#7	43	12.9	p190	BCORL1	IKZF1, VPREB1	Negative	CMR	19.8	CNS
#8	49	84.9	p190	None	IKZF1, CDKN2A/B, RB1, XBP1	Not done	CMR	23.2	CNS
#9	44	236.7	p190	None	IKZF1, CDKN2A/B, XBP1	Positive (57/million)	CMR	8.5	CNS
#10	70	181.2	p210	DNMT3A, SF3B1, TFT2	IKZF1	Positive (below LOD)	CMR	20.7	CNS


Short NJ et Al. J Hematol Oncol. 2025 May 14;18(1):55.





BLINATUMOMAB

Martinelli G et Al. Eur J Cancer. 2021 Mar;146:107-114.

Martinelli G et Al. J Clin Oncol. 2017 Jun 1;35(16):1795-1802.

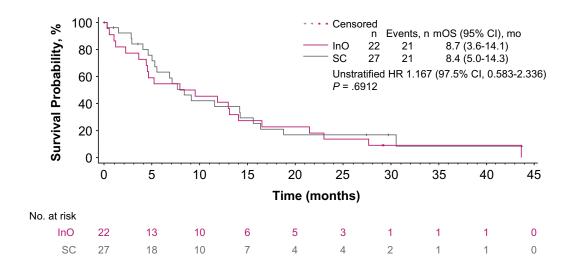

	$\mathbf{MRD}+$ (N	= 109)					R/R B-cell	ALL (N = 140))	
Characteristics ^a	All MRD+	(N = 109)	Ph- (<i>N</i> = 3	83)	Ph+ ^a (N	= 26)	R/R Ph— (/	V = 106)	R/R Ph+a	(N = 34)
Sex, female, n (%)	45 (41.3)		39 (47.0)		6 (23.1)		50 (47.2)		16 (47.1)	
Age at blinatumomab initiation, years, median (IQR)	43.0 (27.0-	-55.0)	35.0 (24.0-	-56.0)	50.5 (43.0	0–55.0)	36.5 (24.0-	-52.0)	51.0 (37.0-	-64.0)
Number of salvage therapies										
Median (IQR)	0 (0-1)		0 (0–1)		0 (0–2)		1 (0–2)		1 (1–2)	
Min., max.	0, 4		0, 4		0, 4		0, 5		0, 5	
Prior salvage therapy, n (%)	$n = 77^{b}$	$n=32^{c}$	$n = 57^{b}$	$n = 26^{c}$	n = 20 ^b	$n = 6^{c}$	n = 64 ^d	$n = 42^{e}$	n = 20 ^d	$n = 14^{e}$
0	42 (54.5)	18 (56.2)	35 (61.4)	15 (57.7)	7 (35.0)	3 (50.0)	34 (53.1)	11 (26.2)	2 (10.0)	2 (14.3)
1	21 (27.3)	8 (25.0)	14 (24.6)	6 (23.1)	7 (35.0)	2 (33.3)	13 (20.3)	19 (45.2)	8 (40.0)	6 (42.9)
2+	14 (18.2)	6 (18.8)	8 (14.0)	5 (19.2)	6 (30.0)	1 (16.7)	17 (26.6)	12 (28.6)	10 (50.0)	6 (42.8)
Disease status at blinatumomal	b initiation, n	(%)								
Full hematologic relapse	NE		NE		NE		64 (60.4)		20 (58.8)	
Refractory	NE		NE		NE		42 (39.6)		14 (41.2)	
Persistent MRD	77 (70.6)		57 (68.7)		20 (76.9)		NE		NE	
MRD relapse	32 (29.4)		26 (31.3)		6 (23.1)		NE		NE	
HSCT before blinatumomab initiation, n (%)	17 (15.6)		9 (10.8)		8 (30.8)		43 (40.6)		12 (35.3)	
Time between HSCT and initiation, months, median (IQR)	10.2 (3.8–2	24.9)	9.5 (3.8–2	1.3)	13.5 (5.4-	-36.7)	13.0 (7.2–2	20.0)	10.4 (7.1–2	20.6)
Response before blinatumomak	o initiation, n ((%)								
CR/CRh/CRi at frontline therapy	NE		NE		NE		84 (79.2)		25 (73.5)	
Blast count in the bone marrov	v at blinatumo	omab initiatio	on, <i>n</i> (%)							
≤5	86 (91.5)		65 (91.5)		21 (91.3)		14 (14.6)		2 (7.1)	
>5 and <10	2 (2.1)		2 (2.8)		0 (0.0)		5 (5.2)		0 (0.0)	
≥10 and <50	2 (2.1)		2 (2.8)		0 (0.0)		33 (34.4)		12 (42.9)	
≥50	4 (4.3)		2 (2.8)		2 (8.7)		44 (45.8)		14 (50.0)	
Unknown	15 (NA)		12 (NA)		3 (NA)		10 (NA)		6 (NA)	
Extramedullary involvement, n	(%)									
Yes	NA		NA		NA		20 (19.2) ^f		5 (14.7)	
Central nervous system	NA		NA		NA		4 (3.8)		5 (14.7)	
Testis	NA		NA		NA		4 (3.8)		0 (0.0)	
Other	NA		NA		NA		12 (11.5)		0 (0.0)	
No	NA		NA		NA		84 (80.8)		_	
Unknown	NA		NA		NA		2 (NA)		_	

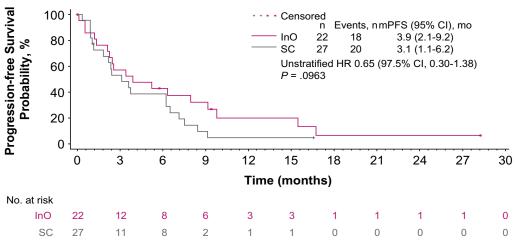
Tyrosine kinase	MRD+	R/R
inhibitors, n (%)	Ph-/ Ph+a	Ph+
	(<i>n</i> = 109)	(n = 34)
Any	13 (12.3)	14 (41.2)
Missing	3 (NA)	0 (NA)
Imatinib	1 (0.9)	1 (2.9)
Dasatinib	8 (7.5)	6 (17.6)
Nilotinib	0 (0.0)	2 (5.9)
Bosutinib	0 (0.0)	1 (2.9)
Ponatinib	4 (3.8)	6 (17.6)

Boissel N et Al. Blood Cancer J. 2023 Jan 4;13(1):2.

MEDICINA DI PRECISIONE NELLE **LEUCEMIE ACUTE LINFOBLASTICHE (LAL):**dove siamo e dove stiamo andando?

		MRD+		R	/R
	All MRD+a (n = 109)b	Ph- ^c (<i>n</i> = 83) ^b	Ph+ ^d (<i>n</i> = 26)	Ph-e (<i>n</i> = 106) ^f	Ph+ ^g (<i>n</i> = 34) ^h
Patients, n (%)					
Event (death)	33 (30.3)	28 (33.7)	5 (19.2)	55 (51.9)	15 (44.1)
Censored (alive at end of study, lost to follow-up)	74 (67.9)	53 (63.9)	21 (80.8)	47 (44.3)	16 (47.1)
KM estimate, % (95% CI)					
At 1 month	98.1 (92.7–99.5)	98.8 (91.6–99.8)	96.2 (75.7–99.4)	94.1 (87.3–97.3)	93.5 (76.6–98.3)
At 3 months	96.3 (90.3–98.6)	96.3 (89.0–98.8)	96.2 (75.7–99.4)	84.0 (75.2–89.9)	80.3 (61.3–90.6)
At 6 months	92.4 (85.4–96.1)	95.1 (87.4–98.1)	83.6 (62.0–93.5)	67.5 (57.3–75.8)	60.2 (40.7–75.1)
At 12 months	77.9 (68.0–85.0)	76.4 (64.7–84.7)	83.6 (62.0–93.5)	50.6 (40.0–60.2)	53.1 (34.0–69.1)
At 18 months	66.9 (55.6–75.9)	62.4 (49.3–73.1)	83.6 (62.0–93.5)	42.8 (32.1–53.2)	44.3 (22.5–64.1)
At 24 months	64.7 (52.8–74.2)	62.4 (49.3–73.1)	71.7 (38.6–89.0)	40.0 (28.7–51.0)	44.3 (22.5–64.1)


Boissel N et Al. Blood Cancer J. 2023 Jan 4;13(1):2.



INOTUZUMAB

		Study 1022		Study 1010
Efficacy Endpoints	InO (n = 22)	SC (n = 27)	P	InO (n = 16)
CR/CRi, n (% [95% CI])	16 (72.7 [49.8-89.3])	15 (55.6 [35.3-74.5])	.1075	9 (56.3 [29.9-80.3])
CR, n (% [95% CI])	10 (45.5 [24.4-67.8])	8 (29.6 [13.8-50.2])	.1265	4 (25.0)
CRi, n (% [95% CI])	6 (27.3 [10.7-50.2])	7 (25.9 [11.1-46.3])	.4577	5 (31.3)
MRD negativity, n (% [95% CI]) ^a	13 (81.3 [54.4-96.0])	5 (33.3 [11.8-61.6])	.009	9 (100.0
		, -		[66.4-100.0])
OS (OFFICE OR)	0 = (0 0 4 4 4)	0.4 (5.0.44.0)		-
Median, mo (95% CI)	8.7 (3.6-14.1)	8.4 (5.0-14.3)		7.4 (4.3-11.3)
HR (95% CI)	1.17 (0	0.64-2.14)	.6912	_
PFS				
Median, mo (95% CI)	3.9 (2.1-9.2)	3.1 (1.1-6.2)		4.4 (1.8-5.9)
HR (95% CI)	0.65 (0	0.34-1.25)	.0963	_

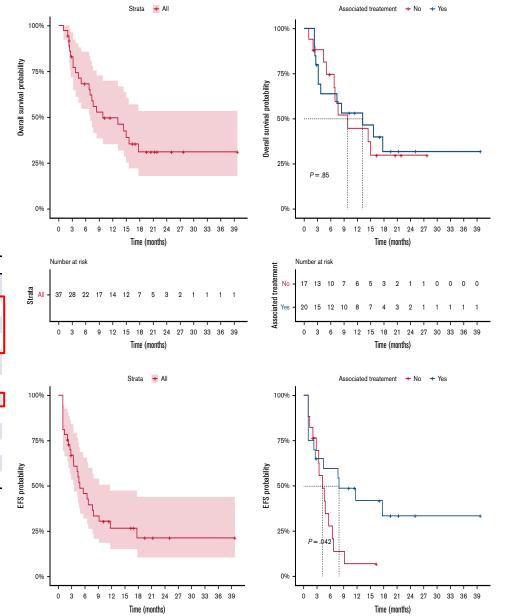
		Study 1	Study	y 1010			
	+ Follow	+ Follow-up HSCT		No Follow-up HSCT		No Follow-up HSCT	
	InO (n = 9)	SC (n = 5)	InO (n = 13)	SC (n = 22)	InO (n = 3)	InO (n = 13)	
PFS, mo, median (95% CI)	9.2 (1.3-NE)	6.5 (2.2-NE)	2.4 (0.6-6.3)	2.4 (1.0-6.2)	5.4 (4.3-NE)	3.5 (1.7-5.9)	
OS, mo, median (95% CI)	16.5 (4.7-43.6)	16.4 (11.6-30.6)	4.4 (1.1-8.0)	6.9 (4.1-9.1)	11.3 (4.3-NE)	7.4 (3.5-11.3)	

Stock W et Al. Cancer. 2021 Mar 15;127(6):905-913.

MEDICINA DI PRECISIONE NELLE

LELICENTIE ACLITE LINIEODI ACTICLE

LEUCEMIE ACUTE LINFOBLASTICHE (LAL):


dove siamo e dove stiamo andando?

Venezia | 20 novembre 2025

Parameters	Value (%) or range (min, max)
Age, median (min-max)	56 (19-84)
Sex male, n (%)	20 (49)
Disease type, n (%)	
R/R Ph ⁺ BCP-ALL	33 (80.5)
LBC-CML	8 (19.5)
No. of previous TKIs, median (min-max)	3 (2-5)
Previous use of ponatinib, n (%)	38 (92.7)
Prior CAR T-cell therapy, n (%)	2 (4.8)
Prior allo-HSCT, n (%)	18 (43.9)
Previous line of therapy, n (%)	41
First line (LBC-CML)	2 (4.9)
Second line of treatment	7 (17.1)
Third line of treatment or more	32 (78)
Disease status, n (%)	
Hematological relapse	24 (58.5)
Refractory	5 (12.2)
CNS-only relapse	1 (2.4)
Molecular relapse	7 (17.1)
Complete remission (intolerance)	4 (9.8)
CNS involvement at time of ASC initiation, n (%)	8 (19)
ASC dose, n (%)	
High dose (200 mg twice daily)	34 (82.9)
Low dose (40 mg twice daily)	7 (17.1)
Associated treatment, n (%)	41
ASC monotherapy, including 2 patients with ITT, n (%)	20 (48.8)
ASC in combination, n (%)	21 (51.2)
High dose chemotherapy	2 (4.9)
Low dose chemotherapy	8 (19.5)
Immunotherapy (blinatumomab or InO)	6 (14.6)
Other TKI	3 (7.3)
DLI	1 (2.4)
CAR T cell	1 (2.4)

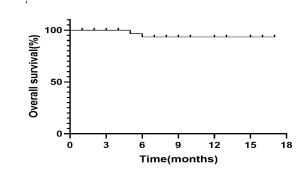
ASCIMINIB

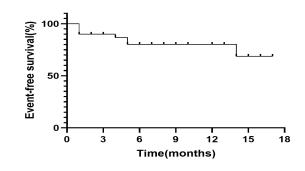
Parameters	Value (%) or range (min, max)
Hematological response rate (efficacy population), n (%)	36
CR	28 (77.8)
CRi	2 (5.6)
Failure	6 (16.7)
MRD response in CR + CRi patients with evaluable bone marrow samples, n (%)	23
No CMR	10 (43.5)
CMR (BCR ABL <0.01% in bone marrow)	13 (56.5)
Post ASC treatment, n (%)	37
No HSCT or CAR T cells	27 (73)
Allo-HSCT	3 (8)
CAR T cell	5 (13.5)
Allo-HSCT + CAR T cell	2 (5.4)

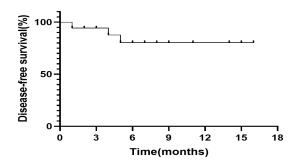
Chanut M et Al. Blood Adv. 2025 Sep 23;9(18):4580-4584.

MEDICINA DI PRECISIONE NELLE

LEUCEMIE ACUTE LINFOBLASTICHE (LAL):


dove siamo e dove stiamo andando?


Venezia | 20 novembre 2025


	Total	Ph ⁺ ALL	CML-BP			
Patient number	59	40	19			
Age (year; median (IQR))	39 (30–48)	38 (28-48)	45 (33–48)			
Male (n (%))	36 (61.0)	22 (55.0)	14 (73.7)			
Female (n (%))	23 (39.0)	18 (45.0)	5 (26.3)			
ECOG performance s	tatus (n (%))					
≤ 1	56 (94.9)	38 (95.0)	18 (94.7)			
=2	3 (5.1)	2 (5.0)	1 (5.3)			
Time from diagnosis to olverembatinib treatment (month; median (IQR))	6.3 (2.5–20.1)	8.2 (2.6-10.8)	20.1 (10.2–87.5)			
BCR::ABL1 transcript	(n (%))					
p210	32 (54.2)	13 (32.5)	19 (100)			
p190	27 (45.8)	27 (67.5)	0 (0)			
Number of lines of prior TKI therapy (n (%))						
0	10 (16.9)	10 (25.0)*	0 (0)			
1	22 (37.3)	20 (50.0)	2 (10.5)			
2	16 (27.1)	8 (20.0)	8 (42.1)			
3	7 (11.9)	1 (2.5)	6 (31.6)			
4	4 (6.8)	1 (2.5)	3 (15.8)			
Type of prior TKI ther	apy (n (%))					
Imatinib	12 (20.3)	3 (7.5)	9 (47.4)			
Nilotinib	10 (16.9)	1 (2.5)	9 (47.4)			
Dasatinib	41 (69.5)	26 (65.0)	15 (78.9)			
Flumatinib	9 (15.3)	3 (7.5)	6 (31.6)			
Ponatinib	19 (33.9)	10 (25.0)	9 (47.4)			
BCR::ABL1 mutation s	tatus (n (%))					
Non-T315I BCR:: ABL1 mutation	8 (13.6)	2 (5.0)	6 (31.6)			
T315I mutation	9 (15.3)	1 (2.5)	8 (42.1)			
Receive HSCT before olverembatinib <i>n</i> (%)	12 (20.3)	11 (27.5)	1 (5.3)			
With CNSL (n (%))	12 (20.3)	9 (22.5)	3 (15.8)			

OLVEREMBATINIB

Ph ⁺ ALL	Primary refractory ALL (n = 26)	Relapse with CNSL (n = 9)	Relapse without CNSL (n = 5)	CR/CRi (n (%))
VDP ± venclexta	15	5	2	21 (95.5)
Hyper-CVAD	6	2	1	8 (88.9)
Blinatumomab	5	1	2	7 (87.5)
Radiotherapy	0	1	0	1 (100.0)

Wen Z et Al. Front Immunol. 2025 May 14;16:1546371.

MEDICINA DI PRECISIONE NELLE

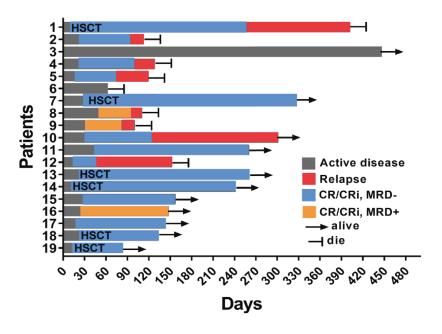
LEUCEMIE ACUTE LINFOBLASTICHE (LAL):

dove siamo e dove stiamo andando?

Venezia | 20 novembre 2025

1.0 0.8 1.0 0.6 0.6 0.4 0.2 Total Events 1yr OS Ponatinib + venetoclax 9 2 72%




12

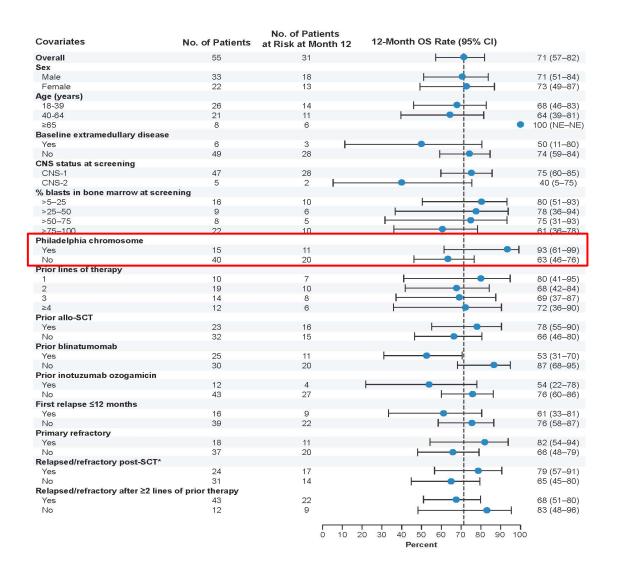
15

18

VENETOCLAX

Short NJ et Al. Am J Hematol. 2021 Jul 1;96(7):E229-E232.

Wang H et Al. Blood Cancer J. 2022 Jan 28;12(1):20.


0.0

CAR-T

	Patients (N = 75)
Age, median (range), years	11 (3-23)
Male, n (%)	43 (57)
Prior stem cell transplant, n (%)	46 (61)
Previous line of therapies, median (range), n	3 (1-8)
Disease status, n (%)	
Primary refractory	6 (8)
Chemo-refractory or relapsed	69 (92)
Morphologic blast count in bone marrow, median (range), %	74 (5-99)
CNS status classification, n (%)*	
CNS-1	63 (84)
CNS-2	10 (13)
CNS-3	1 (1)
Unknown	1 (1)
High-risk genomic lesions, n (%) [†]	28 (37)
Down syndrome, n (%)	6 (8)

CNS, central nervous system.

Maude SL et Al. N Engl J Med. 2018 Feb 1;378(5):439-448.

Shah BD et Al. Lancet. 2021 Aug 7;398(10299):491-502.

^{*} The most current assessment on or prior to the date of enrollment. † BCR-ABL1, MLL rearrangement, hypoploidy, lesions associated with BCR-ABL1-like gene signature, or complex karyotype (≥5 unrelated abnormalities).

Table 1. Baseline patient and disease characteristics

Characteristic	Tisa-cel (n = 50)	Brexu-cel (n = 20)	P value
Sex, n (%)			.35
M	29 (58)	14 (70)	
F	21 (42)	6 (30)	
Age at CAR T-cell infusion, median (range), y	21 (18-26)	22.5 (18-26)	
Race/ethnicity, n (%)			.81
Non-Hispanic White	24 (48)	9 (45)	
Hispanic	19 (38)	8 (40)	
Black	2 (4)	0	
Asian/Pacific Islander	0	2 (10)	
Other/not reported	5 (10)	1 (5)	
ALL subtype, n (%)			.8
Ph ⁻ ALL*	33 (66)	12 (60)	
Ph ⁺ ALL	5 (10)	3 (15)	
Ph-like ALL	11 (22)	5 (25)	
Unknown	1 (2)	0	
Marrow disease before CAR T, n (%)			.1
Undetectable MRD	15 (30)	3 (15)	
Detectable MRD with <5% blasts†	12 (24)	11 (55)	
Flow cytometry	12	6	
clonoSEQ	0	3	
qPCR	0	1	
NGS	0	0	
5 to <50% blasts	9 (18)	2 (10)	
>50% blasts	11 (22)	3 (15)	
Unknown	3 (6)	1 (5)	
Extramedullary disease before CAR T, n (%)			.11
Present	5 (10)	5 (25)	
Not present	45 (90)	3 (15)	
Not assessed/unknown	0	12 (60)	
CNS disease status before CAR T, n (%)			.11
CNS 1	41 (82)	11 (55)	
CNS 2	1 (2)	1 (5)	
CNS 3	2 (4)	1 (5)	
Not assessed/unknown	6 (12)	7 (35)	
Therapy before CAR T	· ·	· ·	
Total lines of therapy, median (range)	3 (1-5)	3 (1-9)	
Blinatumomab, n (%)‡	12 (24)	9 (45)	.08
Inotuzumab, n (%)‡	13 (26)	6 (30)	.73
Allogeneic HCT, n (%)	20 (40)	3 (15)	.04
Bridging therapy between apheresis and lymphodepletion, n (%)	26 (52)	15 (75)	.08
Lymphodepletion regimen, n (%)			.22
Fludarabine/cyclophosphamide	47 (94)	17 (85)	
Other	3 (6)	3 (15)	

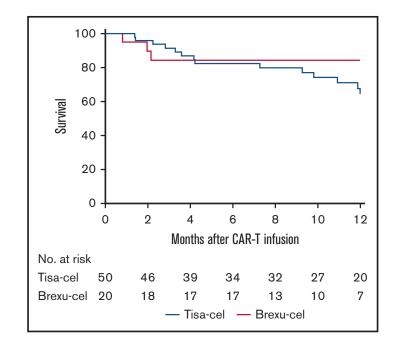


Table 3. Multivariate analysis

		os			RFS			DOR	
Characteristic	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value
CAR T product: brexu-cel vs tisa-cel	0.71	0.18-2.75	.62	1.01	0.40-2.52	.98	0.85	0.26-2.74	.78
Age, >21 vs ≤21 years	1.08	0.36-3.24	.90	1.59	0.68-3.72	.29	1.36	0.46-4.01	.57
ALL subtype, Ph ⁻ vs Ph ⁺ or Ph-like	1.48	0.46-4.81	.51	0.79	0.34-1.80	.57	0.50	0.19-1.32	.16
Marrow disease before CAR T									
MRD [−] or MRD ⁺ vs ≥5% blasts	0.23	0.06-0.86	.03	0.47	0.20-1.10	.08	0.79	0.29-2.15	.64
Therapy before CAR T									
Allogeneic HCT, yes vs no	0.54	0.20-2.33	.38	0.47	0.17-1.30	.15	0.43	0.12-1.53	.20
Blinatumomab, yes vs no	0.23	0.05-1.17	.08	0.33	0.11-1.02	.05	0.42	0.10-1.75	.23
Inotuzumab, yes vs no	6.32	1.48-27.0	.01	3.65	1.41-9.46	.008	2.17	0.66-7.18	.21

Lust H et Al. Blood Adv. 2025 Jun 10;9(11):2763-2772.


MEDICINA DI PRECISIONE NELLE

LEUCEMIE ACUTE LINFOBLASTICHE (LAL):

dove siamo e dove stiamo andando?

Venezia | 20 novembre 2025

2026 Unmet clinical needs

Early relapse/refractory to Blina + 3 gen TKI

Relapse after CAR-T

Extramedullary Relapse

Take home messages

Monitoring MRD with both BCR-ABL and IgH-TCR

Test BCR-ABL mutations

1st line treatment 2st line treatment 2st line line line administered? Allo-SCT performed?

Type of relapse ABL1 mu present/

Molecular
Hematologic
Extramedullary
ABL1 mutations:
present/absent
(particularly T315l)

Burden
of disease
(percentage
of blasts)

Below 50% Above 50%

Below 50%: blinatumomab Above 50%: inotuzumab If >50% blasts, consider additional CHT, mostly if there is an extramedullary involvement

Switch to more potent TKI
Consider CHTimmunotherapy, if not
already performed
Consider CAR-T if feasible

If extramedullary disease: inotuzumab over blinatumomab If CNS disease: CHT, radiotherapy and CAR-T

Chiaretti S et Foà R. Blood. 2025 Jan 2;145(1):11-19.

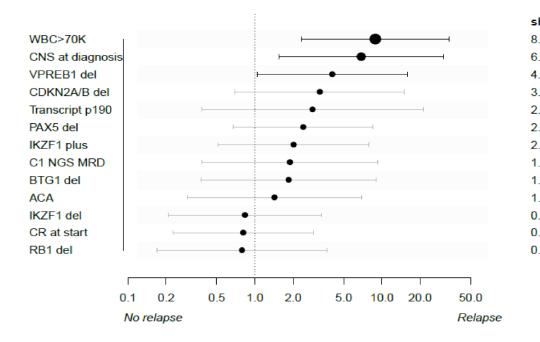
Thank you for attention!

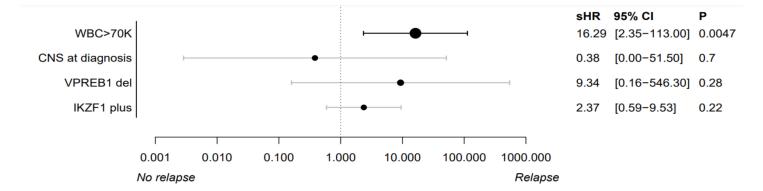
Un ringraziamento speciale...

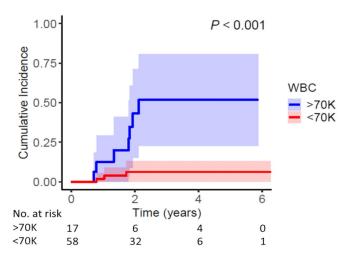
UO Ematologia Ospedale dell'Angelo

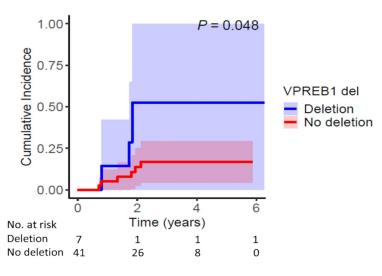
...and to my Sensei

LEUKEMIA UNIT

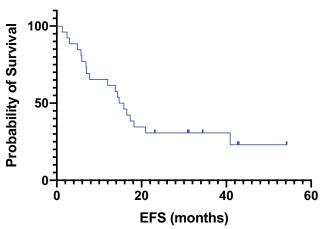

- •Sara Consolo
- •Luca Frison
- Matteo Leoncin
- •Rosaria Sancetta

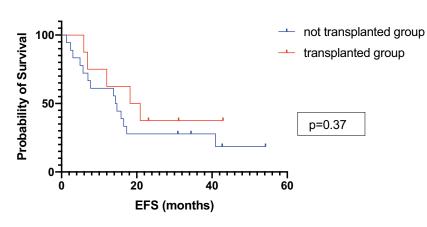

Direttore: Dr.ssa Cristina Skert

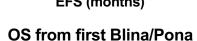

TRANSPLANT UNIT

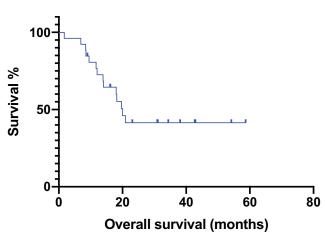

- •Anita Betulla
- •Samanta Bonato
- Francesca Carobolante
- Costanza Fraenza
- •Giulia Perali

HR	95% CI	P	FDR
.86	[2.33-33.70]	0.0014	0.0075
.87	[1.54-30.68]	0.012	0.048
.06	[1.05-15.76]	0.043	0.14
.24	[0.70-15.02]	0.13	0.35
.84	[0.38-21.19]	0.31	0.5
.40	[0.68-8.53]	0.18	0.36
.02	[0.51-7.90]	0.31	0.5
.89	[0.38-9.26]	0.43	0.6
.84	[0.38-8.97]	0.45	0.6
.42	[0.29-6.93]	0.66	8.0
.84	[0.21-3.35]	8.0	8.0
.81	[0.23-2.89]	0.74	8.0
.79	[0.17-3.68]	0.76	8.0




Short NJ et Al. J Hematol Oncol. 2025 May 14;18(1):55.




Blina + Pona

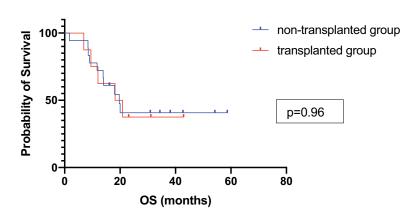
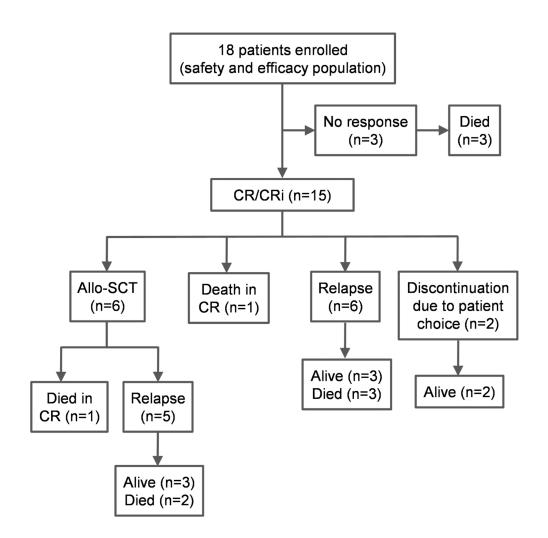
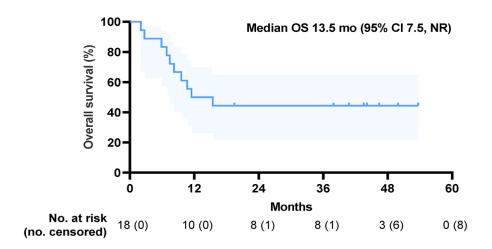
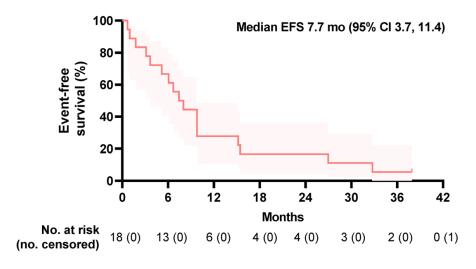


Table 1. Patient characteristics.

N = 26 Ph + ALL	
Median age: years (range)	58 (18–81)
Gender	
Male/female	14/12
Status at diagnosis	
De novo Ph + ALL/Blast crisis of CML	22/4
Central nervous system disease	1
Extramedullary disease	2
p190 protein/p210 protein/unknown	16/9/1
Status at the time of blina/pona	
First relapse	12
Second relapse or more	13
Primary refractory	1
Previous allograft (sibling/MUD)	9 (4/5)
Previous autograft	5
iviolecular status	
No mutation	14
p.T315I mutation	8
p.T315I + p.E255K	1
p.Y253H mutation	1
p.E255K mutation	1
p.F371L + Y253H mutations	1
Previous TKI	
1	8
2	14
3	4

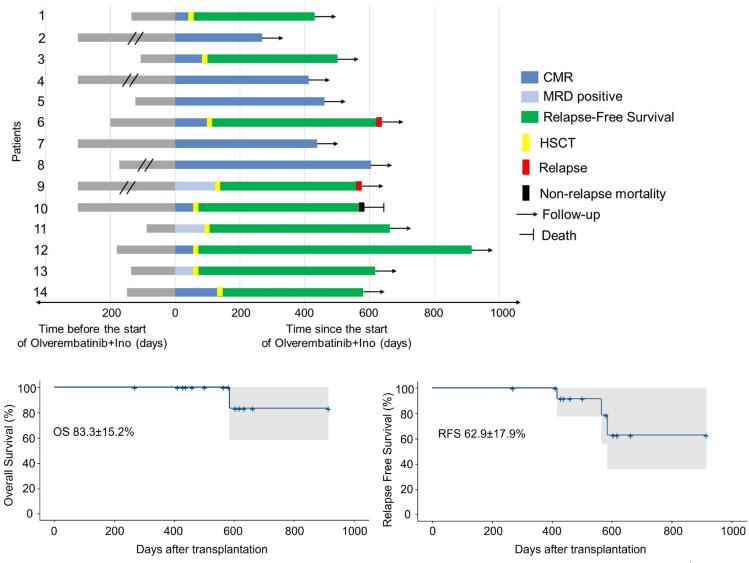

Couturier MA et Al. Leuk Lymphoma. 2021 Mar;62(3):620-629.




MEDICINA DI PRECISIONE NELLE **LEUCEMIE ACUTE LINFOBLASTICHE (LAL):**dove siamo e dove stiamo andando?

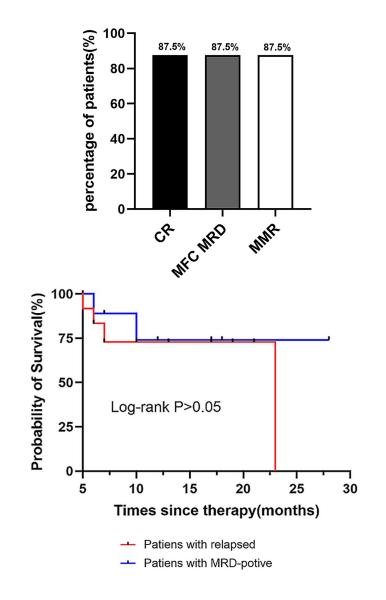
Venezia | 20 novembre 2025

Ino + Bosutinib



Jain N et Al ia. Am J Hematol. 2021 Aug 1;96(8):1000-1007.

Ino + Olverembatinib



Zhang X et Al. Am J Hematol. 2025 Oct;100(10):1924-1928.

Patient	Cycle 1	BM (%)	MFC (%)	ABL (%)	Cycle 2	BM (%)	MFC (%)	ABL (%)
1	Olv + VIP	0	<0.01	0	Olv + VCP	0	<0.01	2.9*10 ⁻⁷
2	Olv + DCME	9	72.71	73.51	Olv + VCP	72	4.86	56.30
3	Olv + CP	0	<0.01	0	Olv + Bli	0	<0.01	0
4	Olv + Bli	0	<0.01	0	Olv + Bli	0	<0.01	0
5	Olv + VP	2	<0.01	2.45	Olv + VP	0	<0.01	0
6	Olv + VP	50	38.97	41.04	N	N	N	N
7	Olv + CVAD	0	<0.01	1.44	Olv + MA	0	<0.01	0.04
8	Olv + VD	0	<0.01	0.003	N	N	N	N
9	Olv + VP + Bli	0	<0.01	0.13	N	N	N	N
10	Olv	4	1.31	26.5	N	N	N	N
11	Olv + VCP	0	<0.01	0.05	Olv	0	<0.01	0.02
12	Olv + VP	0	<0.01	0.08	Olv + Bli	0	<0.01	0.003
13	Olv + IO	0	<0.01	0.037	Olv	0	< 0.01	<0.01
14	Olv + Bli	0	<0.01	0	Olv	0	<0.01	0
15	Olv	2	<0.01	0.34	Olv	0	<0.01	0.011
16	Olv + Bli	0	<0.01	0.1	Olv	0	<0.01	0
17	Olv + MTX	0	<0.01	0.52	Olv	0	<0.01	0
18	Olv + VP	0	<0.01	1.2	Olv + VP	0	<0.01	0
19	Olv + Bli	0	<0.01	0	Olv + Bli	0	<0.01	0
20	Olv + Bli	0	<0.01	0.01	Olv	0	<0.01	<0.01
21	Olv	0	<0.01	0.32	Olv + Bli	0	<0.01	0.12
22	Olv	0	<0.01	<0.01	Olv	0	<0.01	<0.01

Olv, Olverembatinib; Bli, blinatumomab; MA, Methotrexate + Cytarabine; IO, inotuzumab ozogamicin; VIP, Vincristine + Idarubicin + Prednisone; DECM,
Decitabine + Cyclophosphamide + Etoposide + Mitoxantrone; CVAD, Cyclophosphamide + Vincristine + Doxorubicin + Prednisone; VCP, Vincristine + Cyclophosphamide + Prednisone; N, not tested.

Jiang X et Al. Front Med (Lausanne). 2025 Oct 3;12:1662512.

Venezia | 20 novembre 2025

